情感估计是一个积极的研究领域,对人与计算机之间的互动产生了重要影响。在评估情绪的不同方式中,代表电脑活动的脑电图(EEG)在过去十年中呈现了激励结果。 EEG的情感估计可以有助于某些疾病的诊断或康复。在本文中,我们提出了一种考虑到专家定义的生理学知识,与最初致力于计算机视觉的新型深度学习(DL)模型。具有模型显着性分析的联合学习得到了增强。为了呈现全局方法,该模型已经在四个公共可用数据集中进行了评估,并实现了与TheS-of TheakeS的方法和优于两个所提出的数据集的结果,其具有较低标准偏差的较高的稳定性。为获得再现性,本文提出的代码和模型可在Github.com/vdelv/emotion-eeg中获得。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
可重新配置的智能表面(RIS)可以显着增强TERA-HERTZ大量多输入多输出(MIMO)通信系统的服务覆盖范围。但是,获得有限的飞行员和反馈信号开销的准确高维通道状态信息(CSI)具有挑战性,从而严重降低了常规空间分裂多次访问的性能。为了提高针对CSI缺陷的鲁棒性,本文提出了针对RIS辅助TERA-HERTZ多用户MIMO系统的基于深度学习的(DL)基于速率的多访问(RSMA)方案。具体而言,我们首先提出了基于DL的混合数据模型驱动的RSMA预编码方案,包括RIS的被动预编码以及模拟主动编码和基本站(BS)的RSMA数字活动预码。为了实现RIS的被动预码,我们提出了一个基于变压器的数据驱动的RIS反射网络(RRN)。至于BS的模拟主动编码,我们提出了一个基于匹配器的模拟预编码方案,因为BS和RIS采用了Los-Mimo天线阵列结构。至于BS的RSMA数字活动预码,我们提出了一个低复杂性近似加权的最小均方误差(AWMMSE)数字编码方案。此外,为了更好地编码性能以及较低的计算复杂性,模型驱动的深层展开的主动编码网络(DFAPN)也是通过将所提出的AWMMSE方案与DL相结合的。然后,为了在BS处获得准确的CSI,以实现提高光谱效率的RSMA预编码方案,我们提出了一个CSI采集网络(CAN),具有低飞行员和反馈信号开销,下行链接飞行员的传输,CSI在此处使用CSI的CSI反馈。 (UES)和BS处的CSI重建被建模为基于变压器的端到端神经网络。
translated by 谷歌翻译
当RIS反射系数得到精确调整时,在可重新配置的智能表面(RISS)中的被动横向形成可以可行,有效的通信方式。在本文中,我们提出了一个框架,以从Terahertz(THZ)通信系统中的时间序列预测的角度进行深入学习,以跟踪RIS反射系数。所提出的框架对类似的学习驱动的框架实现了两步的增强。具体而言,在第一步中,我们训练液态机器(LSM)在先前的时间步长(称为时间序列序列)上跟踪历史RIS反射系数,并预测其即将到来的时间步骤。我们还通过Xavier初始化技术微调了训练的LSM,以降低预测方差,从而导致更高的预测准确性。在第二步中,我们使用集合学习技术,该技术利用多个LSM的预测能力来最大程度地减少预测差异并提高第一步的精度。从数值上证明,在第一步中,采用Xavier初始化技术来微调LSM最多的LSM预测差异最多可使LSM降低26%,并且在现有的对应物中提高了46%可实现的光谱效率(SE),当部署11x11的RIS时。在第二步中,在训练单个LSM的相同计算复杂性下,具有多个LSM的集合学习降低了单个LSM的预测差异高达66%,并最多可提高可实现的SE系统。
translated by 谷歌翻译
无线联邦学习(AIRFL)允许设备并行训练学习模型,并使用无线计算同步其本地模型。由于本地模型的汇总汇总,AIRFL的完整性很容易受到伤害。本文提出了一个新颖的框架,以平衡AIRFL的准确性和完整性,其中多Anti-Antenna设备和基站(BS)通过可重构智能表面(RIS)共同优化。关键贡献包括一个联合考虑AIRFL的模型准确性和完整性的新的和非平凡的问题,以及将问题转化为可牵引的子问题的新框架。在完美的通道状态信息(CSI)下,新框架将汇总模型的失真最小化,并通过优化设备的发射光束器,BS的接收光束器和RIS配置,以交替的方式保留本地模型的可恢复性。在不完美的CSI下,新框架为光束形成器和RIS配置提供了强大的设计,以打击不可忽略的通道估计错误。正如实验性的佐证,新型框架可以在完美的CSI下保持局部模型可恢复性,并在不完美的CSI下的接收天线数量小或中等时提高精度,并提高精度。
translated by 谷歌翻译
室内多机器人通信面临两个关键挑战:一个是由堵塞(例如墙壁)引起的严重信号强度降解,另一个是由机器人移动性引起的动态环境。为了解决这些问题,我们考虑可重构的智能表面(RIS)来克服信号阻塞并协助多个机器人之间的轨迹设计。同时,采用了非正交的多重访问(NOMA)来应对频谱的稀缺并增强机器人的连通性。考虑到机器人的电池能力有限,我们旨在通过共同优化接入点(AP)的发射功率,RIS的相移和机器人的轨迹来最大化能源效率。开发了一种新颖的联邦深入强化学习(F-DRL)方法,以通过一个动态的长期目标解决这个具有挑战性的问题。通过每个机器人规划其路径和下行链路功率,AP只需要确定RIS的相移,这可以大大保存由于训练维度降低而导致的计算开销。仿真结果揭示了以下发现:i)与集中式DRL相比,提出的F-DRL可以减少至少86%的收敛时间; ii)设计的算法可以适应越来越多的机器人; iii)与传统的基于OMA的基准相比,NOMA增强方案可以实现更高的能源效率。
translated by 谷歌翻译
提出了一种新型可重构智能表面辅助的多机器人网络,其中多个移动机器人通过非正交多重访问(NOMA)提供了多个移动机器人(AP)。目的是通过共同优化机器人的轨迹和NOMA解码顺序,RIS的相移系数以及AP的功率分配,从而最大化多机器人系统的整个轨迹的总和率机器人的位置和每个机器人的服务质量(QoS)。为了解决这个问题,提出了一个集成的机器学习(ML)方案,该方案结合了长期记忆(LSTM) - 自动进取的集成移动平均线(ARIMA)模型和Duel Duel Double Deep Q-network(D $^{3} $ QN)算法。对于机器人的初始和最终位置预测,LSTM-ARIMA能够克服非平稳和非线性数据序列的梯度销售问题。为了共同确定相移矩阵和机器人的轨迹,调用D $^{3} $ qn用于解决动作值高估的问题。基于提议的方案,每个机器人都基于整个轨迹的最大总和率持有全局最佳轨迹,该轨迹揭示了机器人为整个轨迹设计追求长期福利。数值结果表明:1)LSTM-ARIMA模型提供了高精度预测模型; 2)提出的d $^{3} $ qn算法可以实现快速平均收敛; 3)具有较高分辨率位的RI提供的轨迹比率比低分辨率比特更大; 4)与RIS AID的正交对应物相比,RIS-NOMA网络的网络性能卓越。
translated by 谷歌翻译
可重新配置的智能表面(RIS)是未来无线通信系统的新兴技术。在这项工作中,我们考虑由RIS启用的下行链路空间多路复用,以获得加权和速率(WSR)最大化。在文献中,大多数解决方案使用交替的基于梯度的优化,具有中等性能,高复杂性和有限的可扩展性。我们建议应用完全卷积的网络(FCN)来解决这个问题,最初是为图像的语义分割而设计的。 RIS的矩形形状和具有相邻RIS天线的通道的空间相关性由于它们之间的短距离而鼓励我们将其应用于RIS配置。我们设计一组通道功能,包括通过RIS和Direct通道的级联通道。在基站(BS)中,可分离的最小均方平方误差(MMSE)预编码器用于预测,然后应用加权最小均方误差(WMMSE)预编码器以进行微调,这是不增强的,更复杂的,但实现更好的表现。评价结果表明,该解决方案具有更高的性能,允许比基线更快的评估。因此,它可以更好地缩放到大量的天线,推进RIS更接近实际部署的步骤。
translated by 谷歌翻译
人类有自然能够毫不费力地理解语言指挥,如“黄色轿车旁边的公园”,本能地知道车辆的道路的哪个地区应该导航。扩大这种对自主车辆的能力是创建根据人类命令响应和行动的完全自治代理的下一步。为此,我们提出了通过语言命令引用可导航区域(RNR),即导航的接地区域的新任务。 RNR与引用图像分割(RIS)不同,该图像分割(RIS)侧重于自然语言表达式而不是接地导航区域的对象接地。例如,对于指令“黄色轿车旁边的公园,”RIS将旨在分割推荐的轿车,而RNR旨在将建议的停车位分段在道路上分割。我们介绍了一个新的DataSet,talk2car-regseg,它将现有的talk2car数据集扩展,其中包含语言命令描述的区域的分段掩码。提供了一个单独的测试拆分,具有简明的机动指导命令,以评估我们数据集的实用性。我们使用新颖的变换器的架构基准测试所提出的数据集。我们呈现广泛的消融,并在多个评估指标上显示出卓越的性能。基于RNR输出产生轨迹的下游路径规划器确认了所提出的框架的功效。
translated by 谷歌翻译
通过从大型天线移动到用于软件定义的无线系统的天线表面,可重新配置的智能表面(RISS)依赖于单元电池的阵列,以控制信号的散射和反射轮廓,减轻传播损耗和多路径衰减,从而改善覆盖范围和光谱效率。在本文中,在RIS存在下考虑了隐蔽的通信。虽然RIS升高了持续的传动,但是预期接收器和窃听者都可以单独尝试使用自己的深神经网络(DNN)分类器来检测该传输。 RIS交互向量是通过平衡将发送信号聚焦到接收器的两个(潜在冲突)目标而设计的,并将发送的信号远离窃听器。为了提高封面通信,对发射机的信号添加对抗扰动以欺骗窃听器的分类器,同时保持对接收器的影响。来自不同网络拓扑的结果表明,可以共同设计对抗扰动和RIS交互向量,以有效地提高接收器处的信号检测精度,同时降低窃听器的检测精度以实现封面通信。
translated by 谷歌翻译